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Optimum take-off techniques for high and long jumps

R. McN. ALEXANDER

Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9J T, U.K.

SUMMARY

High jumpers run at moderate speeds and set down the foot, from which they take off, well in front of
the body. Long jumpers run up much faster and place the foot less far forward, with the leg at a steeper
angle. A simple model, which takes into account the mechanical properties of muscle, predicts optimum
take-off techniques that agree well with those used by athletes. These predictions are remarkably
insensitive to the numerical values assigned to the physiological parameters.

1. INTRODUCTION

Athletes taking off for a high or long jump set a foot
down on the ground well in front of the body with the
leg almost straight. The knee flexes and then extends,
before the foot leaves the ground for the jump. These
movements have been discussed in many papers, for
example, Hay (1986) and Dapena & Chung (1988),
but there seems to be no theory of optimum take-off
technique. High jumpers enter the final step of their
run up with their centre of mass lower than long
jumpers so that the leg makes a smaller angle with the
horizontal when the foot is first set down. It seems
obvious that they should do this, to throw the body
more steeply into the air, but there is no theory to
predict the optimum angle at which the leg should be
set down. High jumpers enter the final step at much
lower speeds than long jumpers: for world-class male
athletes the speeds are about 7 m s™! for the high jump
and over 10 m s (close to peak sprinting speeds) for
the long jump. It is not obvious whether high jumpers
have to run more slowly to maintain adequate control
of take-off, or whether the lower speed gives some other
advantage. My aim in this paper is to identify the
principles that govern optimum speed and leg angle,
for the take-off both of high jumping and of long
jumping. I use a simple model that considers the
properties of the leg muscles.

2. THE MODEL

The model (figure 1a) resembles an earlier model of
standing jumps (Alexander 1989). It is very simple
(much simpler, for example than the model proposed
by Hatze (1983)), but will be shown in later sections to
predict realistic force patterns and jump performance.
It has a rigid trunk, and a leg formed from two rigid
segments each of length a. The mass m is concentrated
in the trunk and the centre of mass is at the hip joint.
(The centre of mass of a man or woman, standing erect
with the arms by the sides, is about 5 cm above the
centres of the hip joints (Dyson 1973).)

The ground coincides with the X axis of a Cartesian
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system. The foot (treated as a point at the distal end of
the distal leg segment) is set down at the origin. While
it is on the ground, the extensor muscles exert a torque
T at the knee joint but there is no torque at the hip.
Consequently, the ground force F is aligned with the
hip and the centre of mass.

At time ¢, the centre of mass is at (x,y), and the line
from the origin to the centre of mass makes an angle 8
with the horizontal.

0 = arctan (—y/x). (1)

The angle of the knee joint is ¢ so the distance of the
centre of mass from the origin is given by

(x2+y2)% = 2asin (¢/2). (2)

The ground force F'is related to the knee torque 7 by
the equation \

F = T/(acos (¢/2)). (3)

Movements of the knee are accompanied by changes in
length both of the contractile component of the knee
extensor muscles and of the series elastic component.
Any change A¢ in knee angle is the sum of changes A¢,
due to the contractile component and C+AT due to the
series elastic component, which confers angular com-
pliance C

Ap = Ad,+C-AT. ()

I assume that the knee extensor muscles are fully
activated throughout the time that the foot is on the
ground. Aura & Viitasalo (1989) found that electrical
activity in the quadriceps (and gastrocnemius) muscles
of high jumpers reached a high level 40 ms before the
foot was set down for the take-off step and rose only a
little further while the foot was on the ground.
Kyroldinen et al. (1989) made similar observations for
a long jumper, but found that high levels of activity
were attained 60 ms before the foot was set down.

It seems convenient to write equations that involve
torques and joint angles, rather than muscle forces and
lengths (Hof & Van den Berg 1981). Assuming the foot
is on the ground, the torque at the knee depends on the
rate of change of length of the contractile component of
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Figure 1. (a) A diagram of the model. (b) A graph showing the assumed relation between the rate of shortening of
the contractile component of the knee muscles and the torque 7 that they exert. The rate of shortening is represented
by the corresponding rate of change of knee angle, in the absence of series compliance. The continuous line represents
equations (5a) and (54). The broken line is explained in §4.

the knee muscles according to the equations (figure
1b):

if ¢c < 0’ T= Tmax! (50)
if ¢.c > 0, T= Tmax[(éc,max_¢c>

[ (Beomax+ Ghe) . (5b)
Here 7,,. 1s the maximum torque exerted by the

muscles in eccentric activity (i.e. when they are being
stretched forcibly), qﬂc,max is the angular velocity of the
knee corresponding to the muscle’s unloaded rate of
shortening, and G is a constant. Equation (5a) seems
justified by experiments on isolated frog leg muscles
that exerted 1.4 to 1.8 times their isometric forces while
being stretched at all but the lowest rates (Woledge
et al. 1985). Equation (5b) is a version of Hill’s muscle
equation (see, for example, Woledge et al. (1985)), with
the maximum torque attained in eccentric activity
(Tax) used instead of the isometric torque because
muscles exert enhanced forces when shortening after a
rapid stretch (Cavagna et al. 1968).

While the foot is on the ground, the equations of
motion of the centre of mass are:

¥ =—(F/m) cos0, (6)
§= (F/m)sinf—g, (7)

where g is the gravitational acceleration. The foot
leaves the ground when the torque (given by equation
(55)) falls to zero. At this instant (time {,) the centre
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of mass is at (x,,y.) and the components of its
velocity are fyy, 7.y During the aerial phase of the
jump it continues with the same horizontal component
of velocity but has vertical acceleration —g. It rises to
a maximum height # (figure 2).

_ Yo
h= Yo+ 2_ . (8)
g

Its trajectory intersects the ground at (¥, +s,0). To
calculate the distance s (figure 2) imagine that the
jump ended only when the centre of mass hit the
ground. The duration of the flight through the air,
At,;,, would be given by

airs
~Yorr = Yorr Mlyir — 38 (Al )®.

The positive solution of this equation is

air 3

Al — [Jo: + (y'gff-i_zgyoff)%]

g
hence,
§= xoff Atair 1
= (%or/&) [Jorr + (ygff + 28y orr)?]- 9

Aerodynamic drag has been ignored in the above
equations because a rough calculation using the data of
Ward-Smith (1986) shows that its effect would be
small.

I have used equations (1-9) in numerical simulations
of jumps, run on a microcomputer, to obtain the results
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Figure 2. Successive positions of the model during a jump. The position marked ‘on’ occurs at the instant when the
foot is set down, and ‘off” at the instant when it leaves the ground.

presented in this paper. The next section explains my
choice of values for the quantities used in the equations.

3. ASSIGNMENT OF VALUES TO
PARAMETERS

Because athletes differ from each other in mass and
stature, to make the calculations as generally ap-
plicable as possible, dimensionless quantities have been
used, expressing forces as multiples of the weight mg of
the body, distances as multiples of the leg segment
length a and times as multiples of (a/g)%. When the
model stands with its legs straight and vertical, its
centre of mass is at a height 2a above the ground.
When people stand similarly, the height of the centre of
mass is 559, of their stature (Dyson 1973). The leg
segment length a can therefore be estimated as 28 9%, of
stature, for example 0.50 m for a man 1.80 m tall. In
calculating values for a typical male athlete I will
assume a = 0.50 m and body mass m = 70 kg.

For the maximum torque 7,,,, I have chosen a
value of 2.5 mga (860 Nm™ for a typical male athlete).
This is probably larger than the torques that act at the
knees of athletes because the model locates the ground
force at the distal end of its tibia whereas the ground
forces on real athletes presumably act further forward,
on the ball of the foot: consequently, the model needs
an unrealistically large knee moment to give a realistic
ground force. It is shown in §4 that the chosen
maximum torque gives realistic ground forces /. I have
given G (equation (55)) a value of 3, a typical value for
the corresponding Hill’s equation parameter for fast
mammalian muscle (Woledge et al. 1985). (G is the
reciprocal of the parameter for which they use the
symbol a/P). It seems more difficult to identify an
appropriate value for the quantity éc‘max that describes
the intrinsic speed of the muscles. The peak angular
velocity attained by the knee during take off for
standing jumps is about 17 rad s™* (Bobbert & van
Ingen Schenau 1988). For a man of leg segment length
0.5 m, this is 3.8(g/a)?. It scems likely that the unloaded
rate of shortening of the quadriceps muscles is higher
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than this, and I have used 8(g/a)% for most of my
calculations. I also present results for qic,max = 20(g/a)%
to test the sensitivity of the model to this doubtful
parameter. It also seems difficult to select a realistic
value for the series elastic compliance C, which
probably reflects the properties of the tendons more
than those of the muscles (Alexander & Bennet-Clark
1977). T present results for C = 0 and C = 0.1 (mga)™".
With the latter value, the maximum torque 2.5 mga
would stretch the series elastic component by an
amount corresponding to 0.25 rad (14°) movement of
the knee, storing strain energy (37°2,,C) amounting to
0.31 mga, or 106 ] for a typical male athlete. Ker et al.

(1987) estimated that about 52 J strain energy is stored

during a running step, in the Achilles tendon and the

ligaments of the arch of the foot, and additional energy

must be stored in the patellar tendon. Larger forces act

in long jumping than in running, and more strain

energy must be stored.

The initial values of variables (their values at the
instant when the foot is set down on the ground) are
distinguished by the subscript ‘on’. I assume 7, =0
because the vertical component of the initial velocity of
the centre of mass is much smaller than the horizontal
component, both in high jumping and in long jumping
(Dapena & Chung 1988; Hay 1986). I will investigate
the effects on jumping performance of different values
of the initial horizontal velocity #,, and the initial leg
angle 0. The peak speeds attained in springing races
by world-class male athletes are about 11 ms™*
(Baumann et al. 1986), or about 5 (ag)% for a = 0.5 m,
so speeds only up to this limit will be investigated.

The muscles are assumed to be maximally active
from the instant when the foot hits the ground, but the
initial torque 7, depends on the initial state of the
series elastic component. If the muscles had been
inactive until that instant, the series elastic component
would be unstrained and 7., would be zero. It seems
more likely that the muscles develop tension before the
foot is set down, but this is likely to be their isometric
tension rather than the higher tension that they can
exert only in eccentric activity. I have therefore
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Figure 3. The forces exerted by the model on the ground in simulations of () a high jump and (4) a long jump. The

. . . . F F
vertical and horizontal components of force are shown as multiples of body weight (—i and —%, respectively).
mg mg

They are plotted against time, which is represented by the dimensionless group #( g/a) In both cases 1, . = 2.5 mga,
¢c max l= (g/a) C 0. l/mga’ - 3 ¢on 1700 and T =0.6 Tmax In ( )’ on — S(ag) 0 - 450 In (b)s on —
4’5(ag)23 6011 = 60°.

assumed 7, = 0.6 7, in most of the calculations
involving a series elastic compliance. When there is no
series compliance (C=0), 7, = T, ... If the leg was
initially straight, equation (3) would give an infinite
force F for any non-zero value of 7;,. I have avoided

this by assuming an initial knee angle (¢,,) of 170°.

4. RESULTS

Figure 3 shows examples of patterns of force exerted
by the model on the ground. Figure 34 simulates a h1gh
jump. The initial speed of the model was 3(ag)
(6.6 ms™! for a typical male athlete) and it set its leg
down at an angle (6) of 45° Similarly, the high
jumpers studied by Dapena & Chung (1988) had a
mean speed of 6.7 ms™ at the start of the take-off
phase and set down their legs at a mean of 47°. When
the foot left the ground the centre of mass of the model
was travelling at 49° to the horizontal, and those of the
athletes at a mean of 44°. The centre of mass of the
model rose to a height of 3.754 above the ground
(1.88 m for a typical athlete, enough to clear about
that height in a Fosbury flop in which the centre of
mass may pass slightly under the bar (see Miiller 1986).
The athletes cleared a mean height of 2.04 m.

The vertical force calculated for the model (figure
3a) shows an initial peak of ten times body weight

Phil. Trans. R. Soc. Lond. B (1990)

(7000 N for a 70 kg athlete) followed by a plateau at
about 4.5 times body weight (3100 N). Similarly, a force
record of take-off by a high jumper (Aura & Viitasalo
(1989), subject A) shows an initial peak of 8.4 times
body weight followed by a plateau at about 4.9 times
body weight.

In all these respects the simulated jump is reasonably
realistic, but in one important respect it is not. The foot
remalned in contact with the ground for a time of only
0. 52(a/g) (about 120 ms for our typical male athlete),
but the real athletes maintained contact with the
ground for 155 ms (Aura & Viitasalo 1989) or 185 ms
(Dapena & Chung 1988). The discrepancy must be
due at least in part to the model’s lack of a foot. The
toes of high jumpers remain on the ground for some
time after the heel has left it. Also, the force exerted by
the model rises unrealistically rapidly to its initial peak
because no account is taken of the elastic properties of
the foot and shoe.

Figure 34 simulates a longJump The initial speed of
the model was 4. 5(ag) (10.0 m s™* for a typical male
athlete) and the leg was set down at 60° to the
horizontal. The ‘national level’ long jumpers studied
by Luhtanen & Komi (1979) ran up at a mean speed
of 9.6 ms!. Long jumpers set down the foot at the
beginning of the take-off phase with the line from the
centre of mass of the body to the heel inclined at 64—69°
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Figure 4. Graphs of initial knee angle (6,,) against initial speed (represented by the dimensionless group (xi> with
a
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contours showing the relative height (#/a) of the jump. In every case T, = 2.5 mga, G =3, ¢, = 170°

In (@), gemoe = 8(g/a)h C= 2,
mga
T,=06T,
In (b), P max = 8(g/a)%, C=0,
Tn = T
In (), e max = 20(g/a)%, C=0,
T = Thux

to the horizontal (Hay 1986): a line through centre of
mass and ankle, which is more closely comparable to
the line of the model’s leg, would be inclined at about
60-65°. When the foot left the ground the centre of
mass of the model was travelling at 22° to the
horizontal, a slightly larger angle than the mean of 20°
observed by Luhtanen & Komi (1979), but well within
the normal range (Hay 1986). The centre of mass of
the model travelled a horizontal distance of 16.5a
(8.3 m for our typical athlete) between its position at
the instant when the foot left the ground and the
intersection of its trajectory with the ground. This
probably corresponds to an official jump distance of at
least 7.5 m, rather more than the mean of 7.0 m
recorded by Luhtanen & Komi’s (1979) athletes, but
well within the range expected in competition. (The
position of the leg at take-off would probably have put
the centre of mass almost directly over the edge of the
board, but recorded landing points are a little behind
the theoretical point of impact of the centre of mass
(Hay 1986)).

The calculated force patterns are reasonably realistic
in shape (compare with those in Kyréldinen et al.
(1989)), except that the force rises too fast to its initial
peak. However, the forces are rather larger than for
real athletes and the duration of the foot contact
shorter. The initial peak of 14 times body weight and
the plateau at about 6.3 times body weight, in the
vertical component of force, are larger than the
corresponding values of 11 and 4.7 times body weight
recorded by Luhtanen & Komi (1979). The duration
of the foot contact is O.28(a/g)% for the model
(corresponding to 64 ms for our typical athlete), but
Luhtanen & Komi (1979) recorded a mean ground
contact time of 110 ms for their national level athletes.

Phil. Trans. R. Soc. Lond. B (1990)

The fast initial rise in force and the short duration of
ground contact are presumably largely because of the
model’s lack of a foot, as already explained for the high
jump. The forces are larger in the simulated long jump
than in the high jump, for the same torque, because the
knee bends less, to a minimum of 135° instead of 123°.

These examples show that the model, though simple,
is capable of simulating high and long jumping
reasonably well. I now investigate its behaviour more
systematically.

Figure 4 shows, by means of contours, the heights to
which the model’s centre of mass would rise in jumps
that use different initial speeds and leg angles. In figure
4a the other parameters of the model are the same as
those in figure 3. The highest jumps are obtained with
an initial speed of about 3(ag)? and an initial leg angle
of 45-50°, that is, at about the speed and leg angle used
for the example of a high jump shown in figure 3a.
Notice that a faster run-up does not necessarily give a
higher jump: the highest jumps are obtained at
intermediate speeds.

It seems pertinent to ask whether this conclusion
depends critically on the values assigned to the
parameters that were kept constant in figure 44. In b,
the maximum torque and the intrinsic speed of the
muscles are the same as before, but the series
compliance has been reduced to zero. The highest
jumps are still obtained at a speed of about 3(ag)?, but
the optimum leg angle is slightly lower than before
(about 40°) and the greatest obtainable height is only
3.2 a (about 1.6 m for our typical athlete) instead of
the more realistic 3.8 a. In figure 4¢ the compliance is
again zero, but the height of the best jump has been
restored by increasing the intrinsic speed of the muscles
to a value that is probably unrealistically high. The
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optimum leg angle is even lower than in (), but the
highelstjumps are still obtained with an initial speed of
3(ag):.

The calculation of figure 4a was repeated with
different initial knee angles. The highest jump ob-
tainable was about 3.6 a for an initial knee angle of 160°
and 3.9 a for 178°, but the changes had little effect on
optimum speed and leg angle. An initial knee angle of
178° gave unrealistically high impact forces. Increasing
the maximum torque from 2.5 to 3.8 mga, with other
parameters shown in figure 4 b, shifted the optimum to
a higher speed (4(ag)?) and a larger initial leg angle
(55°) and gave jump heights up to 3.9 a. However,
with zero compliance even this very high torque
(which gave unrealistically high ground forces) gave a
poor jump of only 3.5 a when the initial speed and le
angle were adjusted to more realistic values of 3(ag)?
and 45°. Changing the Hill’s equation parameter G
from 3 to 5 (making the force—velocity curve more
concave) reduced the height of jumps a little, but left
the maximum at the same speed and angle as in figure
4. The results for the model with series compliance
(figure 4a) assume an initial torque of 0.6 7, .
Reducing this initial torque to zero makes the force
patterns unrealistic, eliminating the initial peak.

The initial vertical component of velocity, §,,, was
assumed to be zero in most of the simulations, but
might more realistically have been given a small
negative value (Dapena & Chung 1988). I therefore
repeated the calculations of figure 4a with 3, =
—0.2(ag): (—0.44ms" for our typical athlete).
This reduced the highest obtainable jump by 0.2 a but
had no appreciable effect on the optimum run-up
speed and initial leg angle.

In another simulation, I modified the properties of
the muscle as indicated by a broken line in figure 15,
thus eliminating the effect described by Cavagna,
Dusman & Margaria (1968). (The broken line has
been obtained by multiplying the right hand side of
equation 54 by 0.6.) With the same parameter values as
in figure 4a, the highest obtainable jump was reduced

to 3.4 a and the optimum speed and angle became
3(ag)* and 55°.

Figure 5 shows the lengths of jumps, for different
initial speeds and leg angles. In 5a the other parameters
are the same as for the jumps of figure 3. The longest
jump is obtained at the highest speed, with an initial
leg angle of 70°. The highest speed shown in the figure
would correspond to an exceptional sprinting speed of
11 ms™ (for our typical athlete): the graph suggests
that long jumpers, unlike high jumpers, should make
their run-up as fast as possible consistent with planting
the leg at the appropriate angle. It also shows that the
optimum initial leg angle is larger than for high
jumping.

Figure 55 shows that, without series compliance, the
model cannot jump so far, but the longest jumps are
still obtained at the highest speed and with a steep leg
angle. Figure 5¢ shows that muscles of higher intrinsic
speed (still with no series compliance) make longer
jumps possible, but the optimum is still at high speed
and steep leg angle.

5. DISCUSSION

Much of the skill of high and long jumping consists
in controlling the orientation of body segments in the
air, so as to clear the highest possible bar or make the
rearmost mark on landing as far forward as possible for
a given trajectory of the centre of mass (Miiller 1986;
Hay 1986). These subtleties are ignored in this paper,
which is concerned only to find the take-off technique
that optimizes the trajectory.

The model is grossly simplified. It has no segment
corresponding to the foot, and no foot compliance:
consequently, the force at impact rises unrealistically
rapidly and the duration of ground contact is un-
realistically short, as already noted. Its leg segments
have no mass: if they had, the force required to
decelerate them would contribute to the ground force
following impact (see Ker et al. (1989), on impact
forces in running). The centre of mass is assumed to

80 B
- i L
\
60° - . |

\

! L\

-
-
/

3
fon ! (ag)?

3
%o,/ (ag)?

3
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Figure 5. As for figure 4, but with contours showing the relative length 2 of the jump. The parameters were assigned
a

the same values, for (), (b) and (c), as for the corresponding graphs in figure 4.
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coincide with the hip joint. Only one muscle (regarded
as a knee extensor) is included, and it is assumed to be
fully active throughout the period of ground contact.
The torque that this muscle can exert (for a given rate
of change of knee angle) is assumed to be independent
of knee angle, although the effective moment arm of
the human quadriceps group decreases as the knee
flexes (Lindahl & Movin 1967) and the forces that
muscles can exert depend on their current sarcomere
length (see Woledge et al. 1985). It seemed justifiable to
ignore the dependence of torque on knee angle because
the model uses a restricted range of knee angles, for
example, 123—-170° in the high jump shown in figure 24
and 135-171° in the long jump shown in figure 25. The
advantage of using such a simple model is that
complexity tends to obscure basic principles.

Many of the values needed for parameters in the
model are doubtful. Those used for the intrinsic speed
of the muscles and for the series compliance are little
better than guesses. The maximum torque was chosen
so as to obtain reasonably realistic ground forces, and
is not intended to match the torques that act at the
knees of athletes, as explained in §3. With the
parameters used in figure 3, the model gives fairly
realistic patterns of ground force and realistic heights
and lengths of jump, for appropriate initial speeds and
leg angles. This suggests that the chosen values are not
far wrong.

6. CONCLUSION

The main conclusions from the model are affected
only a little by large changes in the doubtful
parameters. A high jumper should run up at a
moderate speed (about 7 ms™* for a typical male
athlete) and set down the foot from which he takes off
with the leg at an angle of about 45°: this shallow angle
is achieved by running up with the centre of mass low,
and setting down the foot well in front of the body
(Dapena & Chung 1988). A long jumper should run
up as fast as possible and set down the leg at a steeper
angle. High and long jumpers have, of course, learned
by experience that these are the best ways to jump. The
main interest of this paper is that a simple model based
on our knowledge of muscle physiology has sufficed to
explain why these techniques are best. It was not
obvious (at least to me) that the relatively low run-up
speeds used by high jumpers gave any advantage other
than making it easier to control take-off and to obtain
the complicated movements required in the aerial
phase of the jump.

The conclusions come most clearly from the math-
ematics, but it is possible to explain the underlying
principles in words. To obtain the upward momentum
required for a jump, an athlete must exert a downward
impulse on the ground. The forces that can be exerted
are limited by the properties of the leg muscles so the
impulse (force integrated over time) depends critically
on the duration of foot contact. A fast run-up makes for
a large horizontal component of velocity at take-off,
but shortens the duration of ground contact and hence
restricts the vertical impulse. The horizontal com-
ponent of velocity at take-off is more important in long
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jumping than in high jumping, so a faster run-up is
desirable in long jumping. Similarly, a shallow initial
leg angle makes it possible for the foot to be kept on the
ground while the body travels a longer distance, and so
to increase the duration of foot contact and the vertical
impulse. However, when the angle is shallow, the
(desirable) vertical component of ground force is
accompanied by an (undesirable) horizontal com-
ponent, which reduces the horizontal component of the
take off velocity. This component of velocity is more
important in long jumping than in high jumping, so a
long jumper should set down his leg at a steeper angle
than a high jumper. It might be thought that a
horizontal decelerating impulse delivered early in the
take-off phase could be counteracted by an acceler-
ating impulse after the leg has passed the vertical: this
happens in each step when a person runs at a steady
speed (see Alexander 1984). However, if it is necessary
to activate all the muscle early in the period of ground
contact, to obtain the required impulse, it will exert
much larger forces (while being stretched) than it can
while shortening later in the step. For this reason, the
muscles do net negative work during take-off, reducing
the total (kinetic plus potential) energy of the body.
This is a major difference between high jumping and
pole vaulting, in which the potential energy gained is
approximately equal to the kinetic energy lost.

I am grateful to Dr Jests Dapena for stimulating my interest
in athletic jumping. I obtained valuable comments on a draft
of this paper from him and from Dr Felix Zajac, Dr Mont
Hubbard, Dr Tad McGeer, Dr M. R. (Fred) Yeadon and
Dr Robert Ker.
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SYMBOLS USED IN THE TEXT AND

FIGURES

a the length of each leg segment (figure 1a)

C  the angular compliance due to the series elastic
compliance of the knee extensor muscles

F  the force exerted by the foot on the ground

g the acceleration of free fall

h the height to which the centre of mass rises in a jump

(figure 2)
m  the mass of the body
s the horizontal distance travelled by the centre of mass,

from the instant when the foot leaves the ground to the
intersection of its trajectory with the ground (figure 2)
T  the torque exerted by the knee extensor muscles
time
x,y the coordinates of the centre of mass (figure 1a)
6  the angle between the line from hip to foot, and the
ground (figure la)
¢  the angle of the knee joint (figure 1a)
subscript “air’ refers to the aerial phase of the jump
subscript ‘¢’ refers to the contractile component of the muscle
subscript ‘max’ indicates the maximum possible value
subscript ‘off” refers to the instant when the foot leaves the
ground
subscript ‘on’ refers to the instant when the foot is placed on
the ground :

[V

subscripts ‘x’, ‘y’ refer to the x and y directions (figure 1a)
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